209 research outputs found

    Complexity and Inapproximability Results for Parallel Task Scheduling and Strip Packing

    Full text link
    We study the Parallel Task Scheduling problem PmsizejCmaxPm|size_j|C_{\max} with a constant number of machines. This problem is known to be strongly NP-complete for each m5m \geq 5, while it is solvable in pseudo-polynomial time for each m3m \leq 3. We give a positive answer to the long-standing open question whether this problem is strongly NPNP-complete for m=4m=4. As a second result, we improve the lower bound of 1211\frac{12}{11} for approximating pseudo-polynomial Strip Packing to 54\frac{5}{4}. Since the best known approximation algorithm for this problem has a ratio of 43+ε\frac{4}{3} + \varepsilon, this result narrows the gap between approximation ratio and inapproximability result by a significant step. Both results are proven by a reduction from the strongly NPNP-complete problem 3-Partition

    Small-Size Resonant Photoacoustic Cell of Inclined Geometry for Gas Detection

    Full text link
    A photoacoustic cell intended for laser detection of trace gases is represented. The cell is adapted so as to enhance the gas-detection performance and, simultaneously, to reduce the cell size. The cell design provides an efficient cancellation of the window background (a parasite response due to absorption of laser beam in the cell windows) and acoustic isolation from the environment for an acoustic resonance of the cell. The useful photoacoustic response from a detected gas, window background and noise are analyzed in demonstration experiments as functions of the modulation frequency for a prototype cell with the internal volume ~ 0.5 cm^3. The minimal detectable absorption for the prototype is estimated to be ~ 1.2 10^{-8} cm^{-1} W Hz^{-1/2}.Comment: 11 pages, 5 figure

    Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing

    Get PDF
    A continuous wave optical parametric oscillator, generating up to 300 mW idler output in the 3–4 μm wavelength region, and pumped by a fiber-amplified DBR diode laser is used for trace gas detection by means of quartz-enhanced photoacoustic spectroscopy (QEPAS). Mode-hop-free tuning of the OPO output over 5.2 cm-1 and continuous spectral coverage exceeding 16.5 cm-1 were achieved via electronic pump source tuning alone. Online monitoring of the idler wavelength, with feedback to the DBR diode laser, provided an automated closed-loop control allowing arbitrary idler wavelength selection within the pump tuning range and locking of the idler wavelength with a stability of 1.7×10-3 cm-1 over at least 30 min.\ud \ud Using this approach, we locked the idler wavelength at an ethane absorption peak and obtained QEPAS data to verify the linear response of the QEPAS signal at different ethane concentrations (100 ppbv-20 ppmv) and different power levels. The detection limit for ethane was determined to be 13 ppbv (20 s averaging), corresponding to a normalized noise equivalent absorption coefficient of 4.4×10-7 cm-1  W/Hz1/2

    Non-Invasive Monitoring of Inflammation in Inflammatory Bowel Disease Patients during Prolonged Exercise via Exhaled Breath Volatile Organic Compounds

    Get PDF
    The aim of this study was to investigate volatile organic compounds (VOCs) in exhaled breath as possible non-invasive markers to monitor the inflammatory response in inflammatory bowel disease (IBD) patients as a result of repeated and prolonged moderate-intensity exercise. We included 18 IBD patients and 19 non-IBD individuals who each completed a 30, 40, or 50 km walking exercise over three consecutive days. Breath and blood samples were taken before the start of the exercise event and every day post-exercise to assess changes in the VOC profiles and cytokine concentrations. Proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) was used to measure exhaled breath VOCs. Multivariate analysis, particularly ANOVA-simultaneous component analysis (ASCA), was employed to extract relevant ions related to exercise and IBD. Prolonged exercise induces a similar response in breath butanoic acid and plasma cytokines for participants with or without IBD. Butanoic acid showed a significant correlation with the cytokine IL-6, indicating that butanoic acid could be a potential non-invasive marker for exercise-induced inflammation. The findings are relevant in monitoring personalized IBD management

    Exhaled breath reflects prolonged exercise and statin use during a field campaign

    Get PDF
    Volatile organic compounds (VOCs) in exhaled breath provide insights into various metabolic processes and can be used to monitor physiological response to exercise and medication. We integrated and validated in situ a sampling and analysis protocol using proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) for exhaled breath research. The approach was demonstrated on a participant cohort comprising users of the cholesterol-lowering drug statins and non-statin users during a field campaign of three days of prolonged and repeated exercise, with no restrictions on food or drink consumption. The effect of prolonged exercise was reflected in the exhaled breath of participants, and relevant VOCs were identified. Most of the VOCs, such as acetone, showed an increase in concentration after the first day of walking and subsequent decrease towards baseline levels prior to walking on the second day. A cluster of short-chain fatty acids including acetic acid, butanoic acid, and propionic acid were identified in exhaled breath as potential indicators of gut microbiota activity relating to exercise and drug use. We have provided novel information regarding the use of breathomics for non-invasive monitoring of changes in human metabolism and especially for the gut microbiome activity in relation to exercise and the use of medication, such as statin

    Laser photoacoustic detection allows in planta detection of nitric oxide in tobacco following challenge with avirulent and virulent Pseudomonas syringae pathovars.

    Get PDF
    We demonstrate the use of laser photoacoustic detection (LPAD) as a highly sensitive method to detect in planta nitric oxide ( . NO) production from tobacco (Nicotiana tabacum . NO 1 O 3 / NO 2 1 O 2 ). The utility of the LPAD method was shown by examination of a nonhost hypersensitive response and a disease induced by Pseudomonas syringae (P. s.) pv phaseolicola and P. s. pv tabaci in tobacco. . NO was detected within 40 min of challenge with P. s. pv phaseolicola, some 5 h before the initiation of visible tissue collapse. The wildfire tobacco pathogen P. s. pv tabaci initiated . NO generation at 2 h postinfection. The use of . NO donors, the scavenger CPTIO ([4-carboxyphenyl]-4,5-dihydro-4,4,5,5-tetramethyl-3-oxide), and the mammalian nitric oxide synthase inhibitor L-NMMA (N G -monomethyl-L-arginine) indicated that . NO influenced the kinetics of cell death and resistance to both avirulent and virulent bacteria in tobacco. These observations suggest that

    Laser spectroscopy for breath analysis : towards clinical implementation

    Get PDF
    Detection and analysis of volatile compounds in exhaled breath represents an attractive tool for monitoring the metabolic status of a patient and disease diagnosis, since it is non-invasive and fast. Numerous studies have already demonstrated the benefit of breath analysis in clinical settings/applications and encouraged multidisciplinary research to reveal new insights regarding the origins, pathways, and pathophysiological roles of breath components. Many breath analysis methods are currently available to help explore these directions, ranging from mass spectrometry to laser-based spectroscopy and sensor arrays. This review presents an update of the current status of optical methods, using near and mid-infrared sources, for clinical breath gas analysis over the last decade and describes recent technological developments and their applications. The review includes: tunable diode laser absorption spectroscopy, cavity ring-down spectroscopy, integrated cavity output spectroscopy, cavity-enhanced absorption spectroscopy, photoacoustic spectroscopy, quartz-enhanced photoacoustic spectroscopy, and optical frequency comb spectroscopy. A SWOT analysis (strengths, weaknesses, opportunities, and threats) is presented that describes the laser-based techniques within the clinical framework of breath research and their appealing features for clinical use.Peer reviewe
    corecore